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Abstract—Methods for performance monitoring and diagnosis of multivariable closed loop systems have been
proposed aiming at application to model predictive control systems for industrial processes. For performance monitor-
ing, the well-established traditional statistical process control method is empolyed. To meet the underlying premise
that the observed variable is univariate and statistically independent, a temporal and spatial decorrelation procedure
for process variables has been suggested. For diagnosis of control performance deterioration, a method to estimate the
model-error and disturbance signal has been devised. This method enables us to identify the cause of performance
deterioration among the controller, process, and disturbance. The proposed methods were evaluated through numerical
examples.
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INTRODUCTION of the model, the Kesavan's method is thought to be still early for
practical application.

Model predictive control (MPC) has now more than twenty years Considering the above general background, the purpose of this
of history of industrial application. According to a recent survey research has been placed in developing a new line of closed loop
[Qin and Badgwell, 2003], more than 4,500 cases of process implgaserformance monitoring and diagnosis methods for industrial MPC's
mentation have been reported until 2001 worldwide. In industriespr other model-based MIMO control systems. The performance
processes are necessarily subject to aging, modifications, and changeenitoring method is devised based on the well-established tradi-
in operating conditions. All theses result in performance deteriorational univariate SPC technique [Mamzic, 1995; Box and Luceno,
tion of MPC which was optimized for the original process situa-1997]. For this, a whitening filter and PCA are introduced to decor-
tion. Since MPC, unlike PID controller, is not easy to maintain by relate the process variables temporally as well as spatially. For di-
operation personnel, there has been a strong need for on-line pegnosis, a method to identify the model-plant mismatch is pro-
formance monitoring and diagnosis systems for MPC and other agsosed. Using this method, the cause of control performance deteri-
vanced process control systems. oration can be identified up to the controller or process or disturbance,

For the single-input single-output (SISO) case, the ratio of thebut not into more detail.
control error variance under the present control loop to that under
minimum variance control (MVC) has gained general acceptance MVC-BASED CLOSED LOOP PERFORMANCE
as a standard control performance index after Harris [1989] pro- MONITORING METHODS
posed the concept first time. This idea has since attracted signifi-
cant interests and has been developed further by many researcher#\s was reviewed in Introduction, the MVC-based methods con-
[Stanfelj et al., 1993; Kozub and Garcia, 1993; Huang et al., 1995stitute the main stream of the current closed loop performance mon-
Qin, 1997]. Later, Huang et al. [1997] and Harris et al. [1996] ex-itoring methods (CCPMM). To elucidate the status of the proposed
tended the MVC-based SISO assessment method to the multi-input
multi-output (MIMO) case. Recently, Matrikon Application Co.

has commercialized the technique in a software package, Proces R y(t)
Doc™, and reported many successful industrial implementations _ JClosed-loop |
[Matrikon, 2003]. In the next section, we will briefly review the gisturbance | >YSEM
MVC-based methods as implemented in Proce$$Doc
While the above cited researches have been devoted only to ma (a)
itoring, Kesavan and Lee [1997] proposed several MIMO control
loop diagnosis tools based on the prediction error (PE) and othe v(t) - d(t) vt
. . . . ) . Disturbance Closed-Loop
in-depth diagnosis techniques based on parallel filters. Since th whie | model System [~
PE can be calculated only when the disturbance model is availab noise
while most commercial MPC's still rely only on the input-output part ©)
"To whom correspondence should be addressed. Fig. 1. Black box representations of a closed loop system under reg-
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methods in this paper, a brief review is made on the key concepts The statistical monitoring typified by the Schwart chart and
of the CCPMM. CUSUM chart monitoring is a mature field having a long history
A closed-loop system under regulatory control can be representenf industrial practice. This technique was developed only for univari-
as in Fig. 1(a). Since virtually any stochastic disturbance can be re@te random variables and gives valid statistical interpretation when
resented as a filtered white noise, the closed-loop system can agdime monitored variables are results of independent experiments. Such
be represented as in Fig. 1(b) with white noise as its input. A modeh premise can be very often satisfied for observed variables in man-
for Fig. 1(b) can be identified using the output measurements {y(t)},ufacturing industries. In process industries, however, observed pro-
eg. cess variables are subject to dynanpieshave temporal correla-
YO=hz(O+hz-1)+.. +hzt-n) M tions. This violates the assumption of the outcome of independent
experiments. Moreover, in case of multivariate observation, moni-
where {Z(t)} iSs a zero-mean white noise sequence with Variancéored variables may have spatial correlations. This implies that blind
o2 and k=1 without loss of generality. The CCPMM are centered application of SPC technique to process variables may easily fail.
around this model with various interpretations. In this research, we devised a decorrelation procedure and pro-
Assume that the process has d-step delay. Under this conditioR0Se to employ the existing rich SPC technique as a MIMO closed
{hg, ..., h..} are independent of feedback control and determinedbop monitoring tool. The decorrelation is conducted into two steps:
only by the process and disturbance models whjle fhh} vary temporal decorrelation and then spatial decorrelation.
depending on feedback control. Feedback control that gives h Temporal Decorrelator - Whitening Filter: Using control error
=0is called minimum variance control (MVC) since the output var-{ 0 0R"; t=1, ... N} measured under in-control state, a multivari-

iance under this situation takes the minimum achievable value. ~ able ARMA model is identified in the state space form using the
N4SID [Overschee and DeMoore, 1994] or other standard identifi-

O, m20(h+... +hiy) @  cation techniques.
From Eq. (1), the real output variance is given as £() =F( (D) X(t+1) =AX(t) +Kz(t) 5)
; &(t) =Cx(1) +z(1)
botes thﬁ @

The temporal decorrelator (whitening filter) can be constructed from
The closed loop performance assessment index is defined as  this model through the following rearrangement:

Gy - L1t 2() =W(@e(t) =F(q) "z() - X1 "1 =(A "KOXM *KA) )

n(d) = 7SI @ Z(t) =€(t) —Cx(1)

r,|Hence, by processirg) with W(q), a temporally decorrelated signal
r{'I(t) is obtained.

Spatial Decorrelator. To the collection of whitened signal Z=[z(1)
... Z(N)] for the in-control state measurements, the principal com-
ponent analysis (PCA) is applied such that

which is between 0 and 1. In general, d is not accurately know
Hence, performance assessment is carried out for different differe!
values of d.

Sometimes, G(§=) «-hq* is represented in the frequency
domain together with ()= \~hd*. Comparing theses two,
one may get more insight on the cause of poor closed loop perfor- z=ps )
mance.

In addition to the above, statistical tests such as autocorrelatiohere P=[p... pJ and S=[s(1) ... s(N)] with a<<N represent load-
function of control error, which should be zero for more thein d N9 and score matrices for the major principal components of Z,
lag under MVC, and residual test for validation of Eq. (1) are con-"éSpectively. The element&)s of s(f) are temporally as well as

ducted as supplementary assessment tools. spatially uncorrelated. The loading matrix is stored for future on-
In the MIMO control loop assessment, the above methods ardne monitoring and the score values are used to determine the con-
applied to individual outputs. trol limits.

Though many successful applications have been reported, the When a new z(t) is obtained during on-line monitoring, it is pro-
CCPMM have some shortcomings. First, it lacks the diagnosis cal€cted on P to get the score such that
pability. When poor closed loop performance is detected, it cannot s®=Pz(t) 6)
determine if the culprit is control loop itself or a large or unman-
ageable disturbance. The reason for this is that the impulse respord each§) is monitored according to the SPC method.
model {h} represents the combined closed loop and disturbance Schwart Chart Monitoring : Monitoring €t)'s can be conducted
model (Fig. 1(b) instead of Fig. 1(a)). Hence, even when the closeéccording to the standard Schwart and CUSUM chart methods. For
loop is all right, {l} may have poor values. Second, in MIMO sys- example, in the Schwart chart, x-bar which is defined for a disjoint
tems, the statistical tests are conducted on individual outputs wittsubgroup for m-consecutivgi}s as
out cpnsidering the possibl.elcorrelation petween the o_utputs. Thirdly, o s(m(k=1)+1) +. +5(mK)
the time delay, a prerequisite information for analysis, is not easy xi(k) = m
to know, especially in MIMO cases.

©)

is monitored for each i. The two control limits, UCL and LCL, are
SPC-BASED PERFORMANCE MONITORING determined using the in-control state data such that
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UCL; =X +aR; (10) &(t) =g(a) (u(t) +a(t)) +d(t) 13)
LCLi=x~aiR Attempt to identify g(q) via the least square method usingiu(t)+ (t)
where as the regressor results in a bias estimate since u(t) and d(t) are cor-

2(1)+.. +%(N related through the feedback loop. To avoid this problem, we use
X; :W for a sufficiently large N (11) the correlation method [Ljung, 1999] utilizing the fact that  is un-
correlated with d(t),e. Ry (1)=0 for all 7. Then, we can derive the
R =w for a sufficiently large N 12) relation
R.(K) =maxs;(t) - mins(t), tO[m(k—1) +1,mK Ra(0 =9(A)(RaD) *Ri(D) (14)

and estimate g(q) through the standard least squares method. Once
a; is given in relation to a specified risk level and can be found in ahe estimaté) (q) is obtained, the disturbance signal can be repro-
standard textbook like Box and Luceno [1997]. duced according to
Remark: In CCPMM, F(q) (in terms of the impulse response) . R R
in Eq. (5) is used for the closed loop monitoring while the present d(®) =&(t) ~g(a)(u() +a(v) (15
study monitors z(t) (in the form of s(t)). In this respect, the two meth-Now, through further investigation we can conclude who among
ods are complementary instead of competing. Note that CCPMMhe model error, disturbance, and controller is the culprit of the per-
estimates F(g) for each monitoring occasion while the proposedormance degradation. For this, we may carry out closed loop sim-
method in the present form estimates F(q) only once in a certainlation for two cases where the process is assumed to be G(q) and
in-control state. G(0)+9(q), respectively, while injecting the estimated disturbance
for both cases. Then the cause can be easily revealed by inspecting
DIAGNOSIS the resulting closed loop responses.
g(q) can be represented as either a rational function matrix or finite
The monitoring technique only gives a clue that something goegmpulse response matrix.
wrong in the closed loop but doesn't show which part in the closed The model error estimate can be visualized in the frequency do-
loop is responsible for the performance deterioration. main as an array of relative model er@(¢)/G;(€“)], wl[O, 7.
The cause of poor control performance can be classified into thregj(q) can also be used to correct the process model G(q) on which
inadequate controller design or tuning, large plant-model mismatchthe present MPC is based.
and large and/or unmanageable disturbance. There may be differ- One thing to note is that the disturbance estimation is possible
ent ways to identify the cause up to the above level. However, anly when the whole g(q), not a part of g(q), is estimated. This can
method based on closed-loop identification is thought to give thebe illustrated using Fig. 3. If only.() is estimated using {{),
most lucid conclusion. In this research, we propose a method to egs(t), (1)}, the disturbance estimate according to Eq. (15) represents
timate the model error and the disturbance signal at the same time. N
From this result, one can determine which one is the most proba- Ya(0) ~0,(Qun(t) Zdh() *qua(Q)us(t) #di() (16)
ble cause of the performance degradation. The above method concerns only the input-output part of the pro-
Identification of plant-model mismatch Fig. 2 shows a block-  cess model. If the disturbance model H is available, too, methods
diagram that represents the situation of the proposed identificationased on prediction error can be used together to draw a more con-
experiment. For unbiased model estimate, a zero-mean dither sigrete conclusion. We introduce two such methods that are consid-
nal O (t) is superimposed at the input port. An important assumpered to be useful.
tion of this method is that only the input-output part of the model, Cross-correlation Test The cross-correlation test can be con-
G(q), except the disturbance model is used for MPC design, whictucted without closed loop perturbation. Instead, it requires both

is a general situation of the present commercial MPC’s. G(q) and the disturbance mode H(q).
The block diagram analysis shows that the output error is given The test is conducted between the input u(t) and the prediction
by errorg(t). Fig. 4 shows the experimental situation.
The prediction error is represented as
MPC
' WV
gl
.,
d(r) u, (1) y (1)
9 d, (1)
+ g21
n . u(t
u(t) () G .
89 (f) gl2
] d, (1)
G u, (t v, (1)
z ( ) g22 /\
(AN
Fig. 2. A diagram to show the situation of the model error identi-
fication experiment. Fig. 3. A 2x2 system with output disturbance.
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MPC respectively,_ with .sampling period of h=0.5. Two independent in- .

() tegrated white noise sequences were added to each output as a dis-
‘t v turbance. A standard MIMO MPC is installed to regulate the pro-

H h cess output against the disturbance.

’—v g y(@® For model error identification, independent PRBS’s (with an in-

d(t) creased clock period for signal spectrum adjustment) were applied
G to 0,(t) andli(t), respectively. For identification, g(q) was parame-

" e(?) terized as D(G)N(q) where D and N are 2x2 diagonal and full poly-
l —CT>_’ nomial matrices, respectively.
(I-H "y-H 'Gu - In Fig. 5, the estimated impulse response coefficients of the model-

> y(1) plant mismatch are shown in comparison with the true values. We
can see that the proposed method yields highly reliable results.

Fig. 6 shows a part of the disturbance signals reproduced accord-
ing to Eq. (15). This time, too, a satisfactory result was obtained.

u(t) '

Fig. 4. A diagram to show the situation of the cross-correlation test.

£(t) =y(t) —9(t) =H(q) *(y(t) —G(q)u(t)) a7 2. BTX Distillation Column
From the fact that y(t)=(G(q)+g(q))u(t)+(H(q)+h(q))z(t), the effect
of model error on the prediction error becomes g11 g12
0.012 - 0.012 -
&(t) =(1 +H() "h(@))z(t) +H(@) "g(ahu() (18) 001 001

0.008
0.006
0.004
0.002

Under closed-loop control, u(t) is necessarily affected byrg(t
1=0. Thusg(t) and ut1), =0 are independent only when g(g)=h(q)
=0. The independence can be checked by the following hypothes

testing [Lung, 1999]: 0 —
Under the hypothesis the(t) and u(t 1), =0 are independent, L G i s
it holds that g21 g22
N 0.012
- 1
RW(T) ==Y g(t)u(t-T1 19 0.01
()N[Zl()( ) (19) 0.008
satisfies 0008
0.004
~ © 0.002
JINRE(7) - M0, P) where R= 3 R.(k)R,(k) (20) o —
kK= 0 10 20 30 40 0 20 40 60 80
From MO, R) (zero-mean normal density with variangg Rre Fig. 5. Impulse response coefficients of the model-plant mismatch
can determine a critical value fgINRY, 1) (ith a specified risk for the linear system example.
level and test if the hypothesis is acceptable or not, or equivalently,
the model errors for both G(q) and H(g) can be negligible or not. e
X

Detuning test It is obvious that the (one step ahead) prediction 1.5
error&(t) is unaffected by any change in the controller tuning as far 4
as g(q)=h(q)=0 because the process has at least one-step delay. " , .
detuning test proposed by Kesavan and Lee [1997] is considere
as an another option that supplements the model error identifice 0
tion method. -05

T T
—— Estimate
— - True

0 200 400 600 800 1000 1200 1400 1600 1800 2000

NUMERICAL EXAMPLES
(a) d1

1. Linear System ) x10°

In this example, we demonstrate the performance of the mode
error identification method for a 2x2 linear system. The process (G(c 03¢
+g(0)) and the model (G(q)) are zero-order hold sampled equiva o }j
lents of

—— Estimate
— - True

050 M
2 1 1.8 0.9 P
10§+7S+1 24§+1OS+1 d 10§+7S+1 24SZ+1OS+1 0 200 400 600 800 1000 1200 1400 1600 1800 2000
an :
1 3 0.9 2.9 (b) a2
65 +5s+1 40¢+13s+1 65 +5s+1 40¢ +13s+1 Fig. 6. Comparison of the estimated disturbance signals with the

(21) true ones for the linear system example.
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(a) Output error under the in-control state (b) Whitened signal of the output error under the in-control state

Fig. 7. Control error and whitened signals for the distillation column under in-control state.
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Fig. 8. x-bar chart of the score values for the two principal components (subgroup size m=20, risk level=1%).
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0 05 Fig. 10. Control error of the distillation column when there is a large
model error.
0.015 y
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ture [Ramirez, 1997]. The column has 5 stages and treats 250 Ibmol/
Fig. 9. Impulse response coefficients of F(q). hr of feed mixture (mole ratio of B: T: X=0.1:0.6: 0.3) at steady
state. It is assumed that the benzene mole fraction at the top and
xylene mole fraction at the bottom are measured and regulated at
In this example, we consider a numerical distillation column sep-0.23 and 0.9, respectively, using the reflux ratio and reboiler duty
arating xylene at the bottom from a benzene-toluene-xylene mixas manipulated variables. The process model for MPC was deter-
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Fig. 11. x-bar charts under an out-of-control state for the distillation column (subgroup size m=20, risk level=1%).

mined through identification through PRBS test. To each outputoop assessment in CCPMM.
port we added independent integrated white noise signals as distur- This time we change the tray efficiency of the distillation model
bance. Process variables are measured and collected at every 3.6 nfilom 0.9 to 0.8. It is assumed that there is no change in the distur-
Figs. 7 to 9 summarized the results for the in-control state. Firsthance signal. Fig. 10 shows typical output error response under origi-
Fig. 7 shows the control errors (a) and the corresponding whitenedal MPC after transient. It can be seen that the variance of output
signals (b) under a state that we chose to corigidentrol Then error grows compared to the in-control state shown in Fig. 7(a). When
we took PCA on Z. As a result, it was found that contributions ofwe monitor the x-bar values in the Schwart charts (Fig. 11), a num-
the first and second principal directions td Zi# 52.5% and 47.5%, ber of outliers was found to exceed the normal value, which indi-
respectively, thus both are important. Fig. 8 shows the x-bar chartsates that something is wrong in the control system. To diagnose
(Schwart charts) for each score value when the subgroup size is e system, model-error and the disturbance signal were estimated
and the risk level was chosen 1%. It can be observed that the chanae given in Figs. 12 and 13. Further closed loop simulation study
of outlier is around 1% level, which verifies that the temporal andinjecting the estimated disturbance shows that the model error (con-
spatial decorrelations are appropriate. For reference, we plot impulssequently, poorly designed MPC) is the reason of the trouble.
response coefficients of F(q) in Fig. 9, which are used for closed

CONCLUSIONS
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Fig. 12. Frequency domain plot of the relative model errors for the ®

distillation column. Fig. 13. Estimated disturbance signals for the distillation column.
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In this paper, we presented new tools for monitoring and diagHarris, T. J., “Assessment of Control Loop Performa@zey. J. Chem.
nosing the performance of multivariable control systems. The mon- Engng, 67(10), 856 (1989).
itoring part is based on the statistical monitoring technique (SPCHarris, T. J., Boudreau, F. and MacGregor, J. F, “Performance Assess-
whereas the diagnosis part utilizes the closed-loop identification as ment of Multivariable Feedback Controllefsjitomatica32, 1505
the key technique. To enable the SPC technique for the process var- (1996).
iable under closed control, a special procedure that removes teriuang, B., Shah, S. L. and Kwok, E. K., “On-Line Control Performance
poral and spatial correlations of the process variable has been pro- Monitoring of MIMO Processes; Proc. ACC, 1250-1254 (1995).
posed. Huang, B., “Multivariable Statistical Methods for Control Loop Perfor-
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supplemented, the whole system will be able to provide quite sensMamzic, C. L. (ed.), “Statistical Process Control; ISA, Research Trian-
tive and accurate performance assessment and diagnosis for MIMO gle Park, NC, USA (1995).

MPC and other model-based advanced control systems. Matrikon homepage, www.matrikon.com (2003).
Overschee, P. Van and DeMoore, B., “N4SID: Subspace Algorithms
ACKNOWLEDGEMENT for the Identification of Combined Deterministic-Stochastic Sys-

tems;Automatica30, 75 (1994).
This was supported by the IMT2000 (project number: 00015993Ramirez, W. F., “Computational Methods for Process Simulation; 2nd
in 2003 by MOICE and Research Institute for Applied Science and ed., Butterworth-Heinemann, Boulder, CO (1997).
Technology of Sogang University. This paper is dedicated to ProQin, S.J., “Control Performance Monitoring - a Review and Assess-
fessor Hyun-Ku Rhee on the occasion of his retirement from Seoul ment;Comp. Chem. Engn@3, 173 (1997).
National University. Qin, S.J. and Badgwell, T. A., “A Survey of Industrial Model Predic-
tive Control Technology{Control Eng. Practicgll, 733 (2003).
REFERENCES Stanfelj, N., Marlin, T. E. and MacGregor, J. F., “Monitoring and Diag-
nosing Process Control Performance: the Single-loop Bes&hg.
Box, G. and Luceno, A., “Statistical Control by Monitoring and Feed-  Chem, 32, 301 (1993).
back; John Wiley, NY (1997).

Korean J. Chem. Eng.(Vol. 21, No. 3)



