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Abstract−Methods for performance monitoring and diagnosis of multivariable closed loop systems have been
proposed aiming at application to model predictive control systems for industrial processes. For performance monitor-
ing, the well-established traditional statistical process control method is empolyed. To meet the underlying premise
that the observed variable is univariate and statistically independent, a temporal and spatial decorrelation procedure
for process variables has been suggested. For diagnosis of control performance deterioration, a method to estimate the
model-error and disturbance signal has been devised. This method enables us to identify the cause of performance
deterioration among the controller, process, and disturbance. The proposed methods were evaluated through numerical
examples.
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INTRODUCTION

Model predictive control (MPC) has now more than twenty years
of history of industrial application. According to a recent survey
[Qin and Badgwell, 2003], more than 4,500 cases of process imple-
mentation have been reported until 2001 worldwide. In industries,
processes are necessarily subject to aging, modifications, and changes
in operating conditions. All theses result in performance deteriora-
tion of MPC which was optimized for the original process situa-
tion. Since MPC, unlike PID controller, is not easy to maintain by
operation personnel, there has been a strong need for on-line per-
formance monitoring and diagnosis systems for MPC and other ad-
vanced process control systems.

For the single-input single-output (SISO) case, the ratio of the
control error variance under the present control loop to that under
minimum variance control (MVC) has gained general acceptance
as a standard control performance index after Harris [1989] pro-
posed the concept first time. This idea has since attracted signifi-
cant interests and has been developed further by many researchers
[Stanfelj et al., 1993; Kozub and Garcia, 1993; Huang et al., 1995;
Qin, 1997]. Later, Huang et al. [1997] and Harris et al. [1996] ex-
tended the MVC-based SISO assessment method to the multi-input
multi-output (MIMO) case. Recently, Matrikon Application Co.
has commercialized the technique in a software package, Process-
DocTM, and reported many successful industrial implementations
[Matrikon, 2003]. In the next section, we will briefly review the
MVC-based methods as implemented in ProcessDocTM.

While the above cited researches have been devoted only to mon-
itoring, Kesavan and Lee [1997] proposed several MIMO control
loop diagnosis tools based on the prediction error (PE) and other
in-depth diagnosis techniques based on parallel filters. Since the
PE can be calculated only when the disturbance model is available
while most commercial MPC’s still rely only on the input-output part

of the model, the Kesavan’s method is thought to be still early for
practical application.

Considering the above general background, the purpose of this
research has been placed in developing a new line of closed loop
performance monitoring and diagnosis methods for industrial MPC’s
or other model-based MIMO control systems. The performance
monitoring method is devised based on the well-established tradi-
tional univariate SPC technique [Mamzic, 1995; Box and Luceno,
1997]. For this, a whitening filter and PCA are introduced to decor-
relate the process variables temporally as well as spatially. For di-
agnosis, a method to identify the model-plant mismatch is pro-
posed. Using this method, the cause of control performance deteri-
oration can be identified up to the controller or process or disturbance,
but not into more detail.

MVC-BASED CLOSED LOOP PERFORMANCE
MONITORING METHODS

As was reviewed in Introduction, the MVC-based methods con-
stitute the main stream of the current closed loop performance mon-
itoring methods (CCPMM). To elucidate the status of the proposed

Fig. 1. Black box representations of a closed loop system under reg-
ulatory control.
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methods in this paper, a brief review is made on the key concepts
of the CCPMM.

A closed-loop system under regulatory control can be represented
as in Fig. 1(a). Since virtually any stochastic disturbance can be rep-
resented as a filtered white noise, the closed-loop system can again
be represented as in Fig.1(b) with white noise as its input. A model
for Fig. 1(b) can be identified using the output measurements {y(t)},
e.g.,

y(t)=h0z(t)+h1z(t−1)+…+hnz(t−n) (1)

where {z(t)} is a zero-mean white noise sequence with variance
σ z

2 and h0=1 without loss of generality. The CCPMM are centered
around this model with various interpretations.

Assume that the process has d-step delay. Under this condition,
{h0, …, hd−1} are independent of feedback control and determined
only by the process and disturbance models while {hd, …, hn} vary
depending on feedback control. Feedback control that gives hd=…
=0 is called minimum variance control (MVC) since the output var-
iance under this situation takes the minimum achievable value.

(2)

From Eq. (1), the real output variance is given as

(3)

The closed loop performance assessment index is defined as

(4)

which is between 0 and 1. In general, d is not accurately known.
Hence, performance assessment is carried out for different different
values of d.

Sometimes, G(q−1)= q−k is represented in the frequency
domain together with GMVC(q

−1)= q−k. Comparing theses two,
one may get more insight on the cause of poor closed loop perfor-
mance.

In addition to the above, statistical tests such as autocorrelation
function of control error, which should be zero for more than d−1
lag under MVC, and residual test for validation of Eq. (1) are con-
ducted as supplementary assessment tools.

In the MIMO control loop assessment, the above methods are
applied to individual outputs.

Though many successful applications have been reported, the
CCPMM have some shortcomings. First, it lacks the diagnosis ca-
pability. When poor closed loop performance is detected, it cannot
determine if the culprit is control loop itself or a large or unman-
ageable disturbance. The reason for this is that the impulse response
model {hi} represents the combined closed loop and disturbance
model (Fig. 1(b) instead of Fig. 1(a)). Hence, even when the closed
loop is all right, {hi} may have poor values. Second, in MIMO sys-
tems, the statistical tests are conducted on individual outputs with-
out considering the possible correlation between the outputs. Thirdly,
the time delay, a prerequisite information for analysis, is not easy
to know, especially in MIMO cases.

SPC-BASED PERFORMANCE MONITORING

The statistical monitoring typified by the Schwart chart and
CUSUM chart monitoring is a mature field having a long history
of industrial practice. This technique was developed only for univari-
ate random variables and gives valid statistical interpretation when
the monitored variables are results of independent experiments. Such
a premise can be very often satisfied for observed variables in man-
ufacturing industries. In process industries, however, observed pro-
cess variables are subject to dynamics, i.e., have temporal correla-
tions. This violates the assumption of the outcome of independent
experiments. Moreover, in case of multivariate observation, moni-
tored variables may have spatial correlations. This implies that blind
application of SPC technique to process variables may easily fail.

In this research, we devised a decorrelation procedure and pro-
pose to employ the existing rich SPC technique as a MIMO closed
loop monitoring tool. The decorrelation is conducted into two steps:
temporal decorrelation and then spatial decorrelation.

Temporal Decorrelator - Whitening Filter: Using control error
{ε(t)∈2n; t=1, … N} measured under in-control state, a multivari-
able ARMA model is identified in the state space form using the
N4SID [Overschee and DeMoore, 1994] or other standard identifi-
cation techniques.

(5)

The temporal decorrelator (whitening filter) can be constructed from
this model through the following rearrangement:

(6)

Hence, by processing ε(t) with W(q), a temporally decorrelated signal
z(t) is obtained.

Spatial Decorrelator: To the collection of whitened signal Z=[z(1)
… z(N)] for the in-control state measurements, the principal com-
ponent analysis (PCA) is applied such that

Z≈PS (7)

where P=[p1 … pa] and S=[s(1) … s(N)] with a<<N represent load-
ing and score matrices for the major principal components of Z,
respectively. The elements si(t)’s of s(t) are temporally as well as
spatially uncorrelated. The loading matrix is stored for future on-
line monitoring and the score values are used to determine the con-
trol limits.

When a new z(t) is obtained during on-line monitoring, it is pro-
jected on P to get the score such that

s(t)=PTz(t) (8)

and each si(t) is monitored according to the SPC method.
Schwart Chart Monitoring : Monitoring si(t)’s can be conducted

according to the standard Schwart and CUSUM chart methods. For
example, in the Schwart chart, x-bar which is defined for a disjoint
subgroup for m-consecutive si(t)’s as

(9)

is monitored for each i. The two control limits, UCL and LCL, are
determined using the in-control state data such that

σy mv,
2

 = σz
2 h0

2
 + … + hd − 1
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2
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2
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⇔
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⇔

xi k( ) = 
si m k − 1( ) + 1( ) + … + si mk( )

m
-------------------------------------------------------------------



Methods for Performance Monitoring and Diagnosis of Multivariable Model-based Control Systems 577

Korean J. Chem. Eng.(Vol. 21, No. 3)

(10)

where

(11)

(12)

αi is given in relation to a specified risk level and can be found in a
standard textbook like Box and Luceno [1997].

Remark: In CCPMM, F(q) (in terms of the impulse response)
in Eq. (5) is used for the closed loop monitoring while the present
study monitors z(t) (in the form of s(t)). In this respect, the two meth-
ods are complementary instead of competing. Note that CCPMM
estimates F(q) for each monitoring occasion while the proposed
method in the present form estimates F(q) only once in a certain
in-control state.

DIAGNOSIS

The monitoring technique only gives a clue that something goes
wrong in the closed loop but doesn't show which part in the closed
loop is responsible for the performance deterioration.

The cause of poor control performance can be classified into three:
inadequate controller design or tuning, large plant-model mismatch,
and large and/or unmanageable disturbance. There may be differ-
ent ways to identify the cause up to the above level. However, a
method based on closed-loop identification is thought to give the
most lucid conclusion. In this research, we propose a method to es-
timate the model error and the disturbance signal at the same time.
From this result, one can determine which one is the most proba-
ble cause of the performance degradation.

Identification of plant-model mismatch: Fig. 2 shows a block-
diagram that represents the situation of the proposed identification
experiment. For unbiased model estimate, a zero-mean dither sig-
nal (t) is superimposed at the input port. An important assump-
tion of this method is that only the input-output part of the model,
G(q), except the disturbance model is used for MPC design, which
is a general situation of the present commercial MPC’s.

The block diagram analysis shows that the output error is given
by

(13)

Attempt to identify g(q) via the least square method using u(t)+ (t)
as the regressor results in a bias estimate since u(t) and d(t) are cor-
related through the feedback loop. To avoid this problem, we use
the correlation method [Ljung, 1999] utilizing the fact that  is un-
correlated with d(t), i.e., (τ)=0 for all τ. Then, we can derive the
relation

(14)

and estimate g(q) through the standard least squares method. Once
the estimate (q) is obtained, the disturbance signal can be repro-
duced according to

(15)

Now, through further investigation we can conclude who among
the model error, disturbance, and controller is the culprit of the per-
formance degradation. For this, we may carry out closed loop sim-
ulation for two cases where the process is assumed to be G(q) and
G(q)+g(q), respectively, while injecting the estimated disturbance
for both cases. Then the cause can be easily revealed by inspecting
the resulting closed loop responses.

g(q) can be represented as either a rational function matrix or finite
impulse response matrix.

The model error estimate can be visualized in the frequency do-
main as an array of relative model error [ij(e

jω)/Gij(e
jω)], ω∈[0, π].

(q) can also be used to correct the process model G(q) on which
the present MPC is based.

One thing to note is that the disturbance estimation is possible
only when the whole g(q), not a part of g(q), is estimated. This can
be illustrated using Fig. 3. If only g11(q) is estimated using {u1(t),

1(t), y1(t)}, the disturbance estimate according to Eq. (15) represents

(16)

The above method concerns only the input-output part of the pro-
cess model. If the disturbance model H is available, too, methods
based on prediction error can be used together to draw a more con-
crete conclusion. We introduce two such methods that are consid-
ered to be useful.

Cross-correlation Test: The cross-correlation test can be con-
ducted without closed loop perturbation. Instead, it requires both
G(q) and the disturbance mode H(q).

The test is conducted between the input u(t) and the prediction
error ε(t). Fig. 4 shows the experimental situation.

The prediction error is represented as

UCLi  = xi  + αiRi
=

LCL i  = xi  − αiRi
=

xi  = 
xi 1( ) + … + xi N( )

N
---------------------------------------- for a sufficiently large N=

Ri  = 
Ri 1( ) + … + Ri N( )

N
------------------------------------------ for a sufficiently large N

Ri k( ) =   
t

lim si t( ) −  
t

lim si t( ), t m k − 1( ) + 1 mk,[ ]∈max min

û

εo t( ) = g q( ) u t( ) + û t( )( ) + d t( )

û

û
Rdû

Rεoû τ( ) = g q( ) Ruû τ( ) + Rû τ( )( )

ĝ

d̂ t( ) = εo t( ) − ĝ q( ) u t( ) + û t( )( )

ĝ
ĝ

û

y1 t( ) − ĝ11 q( )u1 t( ) = d1 t( ) + q12 q( )u2 t( ) d1 t( )≠

Fig. 2. A diagram to show the situation of the model error identi-
fication experiment. Fig. 3. A 2×2 system with output disturbance.
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(17)

From the fact that y(t)=(G(q)+g(q))u(t)+(H(q)+h(q))z(t), the effect
of model error on the prediction error becomes

(18)

Under closed-loop control, u(t) is necessarily affected by z(t−τ),
τ≥0. Thus ε(t) and u(t−τ), τ≥0 are independent only when g(q)=h(q)
=0. The independence can be checked by the following hypothesis
testing [Lung, 1999]:

Under the hypothesis that ε(t) and u(t−τ), τ≥0 are independent,
it holds that

(19)

satisfies

(20)

From .(0, P1) (zero-mean normal density with variance P1), we
can determine a critical value for (τ) with a specified risk
level and test if the hypothesis is acceptable or not, or equivalently,
the model errors for both G(q) and H(q) can be negligible or not.

Detuning test: It is obvious that the (one step ahead) prediction
error ε(t) is unaffected by any change in the controller tuning as far
as g(q)=h(q)=0 because the process has at least one-step delay. The
detuning test proposed by Kesavan and Lee [1997] is considered
as an another option that supplements the model error identifica-
tion method.

NUMERICAL EXAMPLES

1. Linear System
In this example, we demonstrate the performance of the mode-

error identification method for a 2×2 linear system. The process (G(q)
+g(q)) and the model (G(q)) are zero-order hold sampled equiva-
lents of

(21)

respectively, with sampling period of h=0.5. Two independent in-
tegrated white noise sequences were added to each output as a dis-
turbance. A standard MIMO MPC is installed to regulate the pro-
cess output against the disturbance.

For model error identification, independent PRBS’s (with an in-
creased clock period for signal spectrum adjustment) were applied
to 1(t) and 2(t), respectively. For identification, g(q) was parame-
terized as D(q)−1N(q) where D and N are 2×2 diagonal and full poly-
nomial matrices, respectively.

In Fig.5, the estimated impulse response coefficients of the model-
plant mismatch are shown in comparison with the true values. We
can see that the proposed method yields highly reliable results.

Fig. 6 shows a part of the disturbance signals reproduced accord-
ing to Eq. (15). This time, too, a satisfactory result was obtained.
2. BTX Distillation Columnε t( ) = y t( ) − ŷ t( ) = H q( )− 1 y t( ) − G q( )u t( )( )

ε t( ) = I  + H q( )− 1h q( )( )z t( ) + H q( )− 1g q( )u t( )

R̂εu
N τ( ) = 

1
N
---- ε t( )u t − τ( )

t = 1

N

∑

NR̂εu
N τ( ) . 0 P1,( ) where P1= Rε k( )Ru k( )

k = − ∞

∞

∑→

NR̂εu
N

2

10s2
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---------------------------- 1
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-------------------------------

1
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 + 5s + 1
------------------------- 3
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-------------------------------

 and 

1.8
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24s2
 + 10s + 1

-------------------------------

0.9
6s2
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40s2
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,

û û

Fig. 4. A diagram to show the situation of the cross-correlation test.

Fig. 5. Impulse response coefficients of the model-plant mismatch
for the linear system example.

Fig. 6. Comparison of the estimated disturbance signals with the
true ones for the linear system example.
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In this example, we consider a numerical distillation column sep-
arating xylene at the bottom from a benzene-toluene-xylene mix-

ture [Ramirez, 1997]. The column has 5 stages and treats 250 lbmol/
hr of feed mixture (mole ratio of B : T: X=0.1 : 0.6 : 0.3) at steady
state. It is assumed that the benzene mole fraction at the top and
xylene mole fraction at the bottom are measured and regulated at
0.23 and 0.9, respectively, using the reflux ratio and reboiler duty
as manipulated variables. The process model for MPC was deter-

Fig. 7. Control error and whitened signals for the distillation column under in-control state.

Fig. 8. x-bar chart of the score values for the two principal components (subgroup size m=20, risk level=1%).

Fig. 9. Impulse response coefficients of F(q).

Fig. 10. Control error of the distillation column when there is a large
model error.
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mined through identification through PRBS test. To each output
port we added independent integrated white noise signals as distur-
bance. Process variables are measured and collected at every 3.6min.

Figs. 7 to 9 summarized the results for the in-control state. First,
Fig. 7 shows the control errors (a) and the corresponding whitened
signals (b) under a state that we chose to consider in-control. Then
we took PCA on Z. As a result, it was found that contributions of
the first and second principal directions to ZZT are 52.5% and 47.5%,
respectively, thus both are important. Fig. 8 shows the x-bar charts
(Schwart charts) for each score value when the subgroup size is 20
and the risk level was chosen 1%. It can be observed that the chance
of outlier is around 1% level, which verifies that the temporal and
spatial decorrelations are appropriate. For reference, we plot impulse
response coefficients of F(q) in Fig. 9, which are used for closed

loop assessment in CCPMM.
This time we change the tray efficiency of the distillation model

from 0.9 to 0.8. It is assumed that there is no change in the distur-
bance signal. Fig.10 shows typical output error response under origi-
nal MPC after transient. It can be seen that the variance of output
error grows compared to the in-control state shown in Fig.7(a). When
we monitor the x-bar values in the Schwart charts (Fig. 11), a num-
ber of outliers was found to exceed the normal value, which indi-
cates that something is wrong in the control system. To diagnose
the system, model-error and the disturbance signal were estimated
as given in Figs. 12 and 13. Further closed loop simulation study
injecting the estimated disturbance shows that the model error (con-
sequently, poorly designed MPC) is the reason of the trouble.

CONCLUSIONS

Fig. 11. x-bar charts under an out-of-control state for the distillation column (subgroup size m=20, risk level=1%).

Fig. 12. Frequency domain plot of the relative model errors for the
distillation column. Fig. 13. Estimated disturbance signals for the distillation column.
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In this paper, we presented new tools for monitoring and diag-
nosing the performance of multivariable control systems. The mon-
itoring part is based on the statistical monitoring technique (SPC)
whereas the diagnosis part utilizes the closed-loop identification as
the key technique. To enable the SPC technique for the process var-
iable under closed control, a special procedure that removes tem-
poral and spatial correlations of the process variable has been pro-
posed.

Investigation shows that the proposed monitoring technique is
indeed complementary to the widely accepted MVC-based tech-
nique in that both techniques rely on the ARMA model determined
from the control error sequence. However, the latter inquires the
estimated impulse response coefficients whereas the former inves-
tigates the input white noise of the ARMA model for closed loop
performance monitoring. It is considered that the two methods can
be synergistically combined to produce a more powerful monitor-
ing tool. In addition, if the proposed diagnosis tool and others are
supplemented, the whole system will be able to provide quite sensi-
tive and accurate performance assessment and diagnosis for MIMO
MPC and other model-based advanced control systems.
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